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SUMMARY 
In this paper a finite element solution for two-dimensional incompressible Viscous flow is considered. The 
velocity correction method (explicit forward Euler) is applied for time integration. Discretization in space is 
carried out by the Galerkin weighted residual method. The solution is in terms of primitive variables, which 
are approximated by piecewise bilinear basis functions defined on isoparametric rectangular elements. The 
second step of the obtained algorithm is the solution of the Poisson equation derived for pressure. Emphasis 
is placed on the prescription of the proper boundary conditions for pressure in order to achieve the correct 
solution. The scheme is completed by the introduction of the balancing tensor viscosity; this makes this 
method stable (for the advection-dominated case) and permits us to employ a larger time increment. Two 
types of example are presented in order to demonstrate the performance of the developed scheme. In the first 
case all normal velocity components on the boundary are specified (eg. lid-driven cavity flow). In the second 
type of example the normal derivative of velocity is applied over a portion of the boundary (e.g. flow through 
sudden expansion). The application of the described method to non-isothermal flows (forced convection) is 
also included. 

KEY WORDS Velocity correction method Bilinear interpolation functions Pressure boundary conditions 

INTRODUCTION 

In recent years two-dimensional laminar flows of incompressible Newtonian fluids have been 
analysed in terms of different finite element schemes using the velocity-pressure formulation of 
the Navier-Stokes equations. 

The primitive variable approach for steady flow problems was used by Hood and Taylor,' who 
applied mixed interpolation to the variables in order to avoid the difficulty encountered in equai- 
order interpolation.3 Choosing interpolation functions similar to Reference 1, Kawahara et a1.j 
utilized a finite element technique for the analysis of steady and unsteady flow problems. In the 
unsteady flow analysis, camed out with the perturbation method, the time derivative term was 
expressed by backward substitution (backward Euler). Huyakorn et a1.4 compared different types 
of mixed interpolation elements from the point of view of their numerical performance and 
generation of spurious pressure modes, obtaining results via solving the momentum and 
continuity equations simultaneously (as in References 1-3). 
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Spurious pressure modes (caused by matrix singularities) were explained in detail by Sani et d5 
They also presented a solution for the steady Stokes equations to which the penalty function 
method was applied. In this approximation the computation of the velocity field was camed out 
first. The pressure field was calculated from the continuity equation using the previously obtained 
velocity field as the second step of the algorithm. In the penalty function method, pressure modes 
still occurred. 

The scheme presented by Gresho et d6 used the discretized approximation of the Laplacian 
operator for the calculation of the pressure. The diffusion matrix was singular, in this context, 
with respect to '2Ax' waves. This 'zero-energy mode', similar to the spurious checkerboard mode, 
was eliminated by an hour-glass correction term to the diffusion matrix. To obtain usable 
pressure results, it was necessary to introduce filtering and smoothing techniques' in the mixed 
interpolations contaminated by the spurious pressure mode. 

In the method developed by Tuann and Olson' the velocity field was obtained from the 
momentum equations: a restricted variational principle was applied for the finite element 
formulation. The time derivatives were replaced with the backward difference formula and the 
new velocity field was obtained iteratively using the pressure value of the previous time step. 
From the new velocity distribution the pressure field was computed via the solution of the directly 
derived pressure Poisson equation. The boundary conditions for pressure were derived from the 
momentum equations in the solution of the pressure Poisson equation. Using an incomplete 
cubic interpolation function on triangular elements for both the velocities and the pressure, they 
encountered no problems in evaluating the pressure boundary conditions. The application of the 
derived pressure Poisson equation led to a simple and direct approximation of the Laplacian 
operator, which was necessarily constructed using the natural boundary conditions for pressure. 
There was no pressure mode other than the hydrostatic one. 

Mizukami and Tsuchiya' also described a fractional step method (or segregated method"). 
Their procedure was based on the explicit Euler scheme. The procedure of Helmoltz's decomposi- 
tion led to a Poisson equation for the &potential function. Thus it was necessary to give a 
boundary condition for 4. The prescription of the boundary condition of vanishing 4 did not 
make it possible to use any boundary condition for the outlet other than constant p (e.g. p = 0). 

Gresho and Sani" analysed the pressure boundary conditions for both the consistent and the 
directly derived pressure Poisson equations. They discussed in detail the features of the use of 
either of these formulations from the perspective of well-posedness, solvability/consistency and 
the satisfaction of the continuity equation. 

In the first step of the present method, time integration is carried out through the velocity 
correction method. This time integration scheme can be interpreted either as the first guess of the 
implicit/iterative method developed by Chorin" or a modification of the explicit forward Euler 
scheme used, for example, by Gresho et d6 For discretization in space the Galerkin weighted 
residual method is applied employing the bilinear interpolation function for both the velocities 
and the pressure. The second step of the algorithm is the solution of the directly derived, 
consistent-pressure Poisson equation. To solve this equation, the Neumann boundary condi- 
tion derived from the momentum equations is applied to the portion of the boundary where 
normal velocity is prescribed. For the computation of the natural boundary condition ( d p / d n )  the 
technique defined and demonstrated by Gresho et ~ 1 . ' ~  is applied. If the normal velocity is given 
on the entire boundary (e.g. lid-driven cavity flow) and the pressure is prescribed at one node, the 
Neumann boundary condition ( d p / d n )  cannot be satisfied at the same node. The present method 
treats this pressure Dirichlet boundary condition in a flexible way so as to satisfy the natural 
boundary condition for the whole boundary. In flow-through problems the pressure Dirichlet 
boundary condition at the outlet is calculated via integration of the tangential derivative of 

This method exhibited no spurious pressure mode. / 
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pressure (ap /az )  along this portion of the boundary. The balancing tensor viscosity is introduced 
similarly- to Reference 6. 

In the following sections this technique will be described in detail and demonstrated through 
numerical examples. 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The governing equations here are the two-dimensional unsteady Navier-Stokes equations for an 
incompressible constant-property fluid. In dimensional form these are 

p [ au/at + (u - V)u] + v p  =pvzu + pg, (1) 

v*u=o, (2) 
where t is the time (s), u = u( x, t )  = (u(x, y ,  t ) ,  v (  x, y, t ) )  is the velocity, with Cartesian components 
in two (x, y) directions (m s-'), p = p ( x ,  t ) = p ( x ,  y ,  t )  is the pressure (N m-'), p is the density 
(kg m-3), p is the dynamic viscosity (kg m-' s-'), v=p/p is the kinematic visocity (mz s - ' )  and 
g=(gx, g y )  is the gravitational acceleration (m s-'). Boundary conditions (Dirichlet BCs) are 

u=i(x,t) on r, with n.ildr=O, J: (3) 

where d is a known function on the entire boundary r of the domain R and n is the outward- 
pointing normal vector on I-. Initial conditions are 

u=u(x, t=O)=uo(x) in Our, with V-uo=O in Rur, (4) 

where uo is a prescribed function. 

TIME INTEGRATION 

For discretization in time the velocity correction method is employed. This method was applied 
and explained in detail in References 14 and 15 as well. The obtained semidiscretized scheme is as 
follows. 

Step I 

equation (1) and omit the pressure (Vp") and the gravitational ( p g )  terms: 
Calculation of the 'intermediate-velocity' field-apply the explicit Euler first-order scheme for 

(5 )  ii = U" - A t  [ - VV U" + ( U" V)U"]. 
Step 2 

x ( V p " - p g ) )  into equation (2) to satisfy the incompressibility constraint: 
Solution of the pressure Poisson equation-substitute the actual u"" ( = i i - ( A t / p )  

Vz p" = ( p/A t )V fi. (6) 

Step 3 

'intermediate-velocity' field: 
Correction of the 'intermediate-velocity' field-add the terms neglected in equation (5)  to the 

u"+ ' = ii -( At/p)( Vp" - pg).  (7) 
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The superscript n indicates the number of the time step. A t  is the time increment. It can be seen 
that for the solution of equation (6) it is necessary to introduce additional boundary conditions 
for pressure. 

SPATIAL DISCRETIZATION 

The finite element discretization of equations (5)-(7) is performed using the Galerkin weighted 
residual method via the following expansions in the piecewise polynomial basis functions 
associated with the FEM: 

N 

i = l  
~ ( x '  t ) =  1 ui(t)pi(x)> 

where in the discretized domain there are N nodes for velocity and pressure. The weak form of 
equations (5H7) permits pi to be discontinuous in the first derivatives and introduces natural 
boundary conditions. Thus pi(x) is chosen to be a Co piecewise bilinear basis function defined on 
isoparametric rectangular elements. Inserting (8) into the weak form of (5)-(7) leads to the 
discretized system of equations, which can be written in matrix form for the whole domain. 

Step 1 

MG =M~"-AtvSu"-AtA"u"+Atfi:. 

Step 2 

S p" = ( p/A t ) D 6 + A;. 

(9) 

Step 3 

MU"+' =M6-(At/p)(Dp"-pMg). (1 1) 
Here u"+ and u" are now global vectors containing all nodal values of u and u at the ( n  + 1)th 

and nth time steps respectively (e.g. unT=(unT, vnT), with superscript T denoting transpose), li is 
the global vector for the 'intermediate-velocity' field, p" is the global pressure vector containing all 
nodal values of p at the n th time step (note that p is defined on the same nodes as u), 8: and 8; 
are the vectors of natural boundary conditions for velocity and pressure respectively (detailed in 
the next section), M is the mass matrix (which is lumped via row sum at element level), S is the 
diffusion or Laplacian matrix, D is the divergence matrix (Di = DxG +D,,i) and A" = A(u") is the 
advection matrix. 
The element matrices associated with equations (9Hl l )  are evaluated as 

Me=jfn, ++Tdxdy (without lumping), (W 

se=j j * ,  Ca+/ax)(a+Tlax)+(a+lay )(a+TlaY)l dXdYY (12b) 

(1W 
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A"= [In, #[ ~ " ~ + ( a # ~ / a x ) +  ~ ' ~ # ( a + ~ / a y )  J dxdy, ( W  

where # T = ( c p l ,  cp2,  c p 3 ,  cp4) is the vector of basis functionsi6 for element e. The algebraic system 
of equations (9)-(11) together with the boundary conditions can then be solved. In the case of the 
diagonal lumped mass matrix the inversion is trivial and the computation evaluates the 
'intermediate-velocity' field via equation (1 1) node by node. The element matrices (12a)-(12c) and 
the lumped mass matrix are generated once during a computation and retrieved every time they 
are needed. The advection matrix (12d) is calculated at every time step. For numerical integration 
the Gaussian quadrature formula (for n=2)16 is utilized. For equation (10) the skyline solver is 
applied. 

BOUNDARY CONDITIONS FOR THE DERIVED ALGORITHM 

Two cases (A and B) are considered. 

Step 1 

The last term on the right-hand side of equation (9) includes the natural BC for velocity. 

Case A.  The normal velocity, via equation (3), is prescribed over the entire boundary (e.g. lid- 
driven cavity flow): 

8:=0 on r. (1 3 4  

Case B. The normal velocity, via equation (3), is not prescribed over a portion of the boundary 
(e.g. flow-through problems). The normal derivative of velocity is specified on r2 such that 

fqT=(?:T,CT) on r2, (13b) 
where 

c = v  I, #(au"/an)dT, t = v  Ir2 #(du"/dn)dr (134 

and rl u T2 = r. In this case on the r,-boundary the normal velocity is given via equation (3). 
Here n is the direction of the outward-pointing normal vector on the boundary. du"/dn and 
du"/dn  are approximated by the derivative at the centre of the corresponding element. 

Step 2 

The last term on the right-hand side of equation (10) contains the natural BC for the pressure 
Poisson equation. Gresho and Sani" pointed out the significance of the proper boundary 
conditions for pressure. 

Case A (same as Case Afor  Step I )  

#(ap"/dn)dT on rM- l ,  

with rM-l ur,=r, where rM-l  has M-1 nodes, while rM has the Mth node on it. In 
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equation (14) M is the number of nodes on the boundary and 

dp"/a  n = n - V p" = p { vv u: - [ (8 u:/d t ) + (u" - V)u:]} (15) 
is the consistent Neumann boundary condition. For walls with no penetration au:/at=O. 
Equations (15) and (14) can be considered as 'Step 0' of the algorithm. The Dirichlet BC is 
prescribed at one node of the boundary: 

j = O  on rM, (16) 
in other words at the Mth node. fl  is the hydrostatic pressure mode, an arbitrary additive constant 
defining the corresponding pressure. 

Case B (same as Case Bfor Step I ) .  The natural BC with equations (14) and (15) is prescribed 
on rl. On T2 the Dirichlet BC for pressure is to be calculated through the integration of its 
tangential derivative: 

n 

where 

apn/ar =z - Vp"= p{  vvzu: - [(au:/a t) +(u"- v)u:]}. (18) 
The solution of equations (15) and (18) will be explained in the next section. Note that equations 
(15) and (18) apply under the constraint that L / R 4  1, where L is a length scale characterizing the 
size of R and R is a scale characterizing the raidus of curvature of r. 
Step 3 

For equation (11) the Dirichlet BC for velocity is to be introduced (via equation (3)): 

on r (for Case A) 
on rl (for Case B). i = i ( x ,  ( n + l ) A t )  

'STEP 0' O F  THE ALGORITHM 

The solution of equations (15) and (18) is based on the method described in Reference 13. This 
technique is applied for the computation of derived boundary quantities. In the present case the 
normal ( a p " / a n )  and tangential ( a p " / a z )  components of equation (1) are computed as force or 
flux to be determined on the boundary. The values of u: or u: and vector u" are known from the 
previous time step. The calculation of dp"/an will be shown in the rest of this section. 

Construction of the weak form of equation (15) begins with 
P r 

$ip:dR= ~~~{vV~U:-[(~U:/~~)+(U"'V)U:]}~Q, i=l ,2, .  . . ,M-1, (204 J* J* 
where t,bi is the test function, non-zero only at the boundary nodes, and p:=  apn/an is the pressure 
gradient. In accordance with the Galerkin method p :  is expanded in the { $i}-basis as 

where p t  is to be determined. Integrating equation (20a) by parts and inserting (20b) and (8a) into 
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the weak form of equation (20a), the following algebraic system is achieved to evaluate p:i 
on rM-l: 

where M*, S* and A* are similar to M, S and A in equation (9), M** is the boundary mass matrix 
and A,* contains the normal derivative of velocity of rM-' (as in equation (13)). The con- 
tributions to equation (21) can be formed in the usual way (at element level) except that only those 
elements with nodes on TM-' need to be considered. qi, similarly to pi, is chosen to be a Co 
piecewise bilinear basis function (thus M** = M*). The calculation of the tangential component 
(i3pR/i3z) can be carried out in the same way. For the computation of 6 in the case of an open 
boundary Shimura and Kawahara14* 

M**p:= -pM*(u:-u:- ' ) /At-pvS*u:--pA*u::+pa,*,  (21) 

suggested a different procedure. 

INTRODUCTION OF THE BALANCING TENSOR VISCOSITY 

The above-prescribed scheme is a modification of the explicit forward Euler method. Thus it has the 
same difficulty associated with negative diffusivity as the technique developed by Gresho et d6 
That is, for advection-dominated flows the stability limit on At is very restrictive and for pure 
advection the method is unconditionally unstable. A Taylor series analysis of equation (1) (with 
the omission of the pressure and gravitational terms) leads to the introduction of an additional 
tensor viscosity to balance the reduction of the effective viscosity. Thus 'Step 1' of the algorithm is 
to solve 

instead of equation (5), where v is evaluated for each element separately as 

6 = U" -A t  [ - V . Y*VU" +(u".V)U"] (2W 

(At/2)in6n]. (22b) 
v + (At/2)i"zi" 

'* = [ (A t/2)i7"'" v + (A t/2)6"6" 

The elementwise-calculated Y* viscosity tensor is symmetric and constant. i" and 6" are the 
average velocities in the element (arithmetic average of the nodal values). For further details on 
the balancing tensor viscosity see Reference 6. 

RELAXATION OF '6 =O' DIRICHLET BOUNDARY CONDITION 

In order to explore the features of the method developed here, the lid-driven cavity flow problem 
for Re= 100 has been selected as the first test of the algorithm. The results are obtained on a 
graded mesh of 25 x 25 nodes. The sketch of Figure 1 shows the boundary conditions. Other 
parameters of the computation are p = 10, p = 10o0, g = 0, At = 0005 and NDT (number of time 
steps)=6OOO. The time increment (At) is chosen in consideration of the stability limit given by 
Gresho et ~ 1 . ~  for the improved (by BTV) scheme. The steady state is reached after about 3000 
time steps. The obtained pressure distribution is presented in Figure 2. 

Upon examining this pressure distribution, it may be noted that the prescription of the 
$ = 0 Dirichlet boundary condition has caused a local pressure drop (or peak) at and around the 
node where it is prescribed. This local pressure drop (or peak) is the consequence of the fact that at 
this node the Neumann boundary condition is not satisfied. Following the notation of Figure 3, 
the value of this local pressure drop (or peak) is estimated as 

8P=(Pz  +0*5P, +p,)/2.5-p1 (23) 
where p z ,  p 3 ,  p4 and p1 are the pressure values computed at nodes 2,3,4 and 1 respectively. The 
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f -1.0 
c = 0.0 

apian= 

u&) = 0.0 
vo(g) -0.0 fi = 0.0 1 .Om 
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, x, 

-570 0 P 

Figure 2. Pressure distribution; &=loo, p=O 

6 = p, - 0.0 

7 7 7  P3 

Figure 3. Calculation of the local pressure discrepancy 

local pressure discrepancy for the case j = 0 is shown in Figure 4(a). It is denoted ‘dissat 8p’ and 
calculated from equation (23). 

To satisfy the natural boundary condition on the whole boundary, the condition j = O  is 
relaxed and the value of j is extrapolated from the pressure values of the adjacent nodes at every 
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Figure 4(b). Velocity distribution; Re= 100, is flexible 

.... .... . . . .  . . . .  

. . . .  
* , . ,  
* , a ,  . . . .  
t t r ,  

t + . ,  

! l . ,  

t + 4 .  

1 1 . .  

) I d ,  

I , . ,  

* . a .  

. . . .  

. I . .  

. , . .  
,.,. . . . .  . ,  . *  . . .. 



412 A. KOVACS AND M. KAWAHARA 

-520 

Figure 4(c). Pressure distribution; Re= 100, is flexible 

time step. Thus in this computation 

$"= p'j =(p;--'  +0*5py ' + p i -  ')/2.5 + p t ,  

where 

pt = + p;- 1 - p"Z2-pp;-2)/2.0. (24b) 

$" denotes the extrapolated value of j? for t = n A t .  The local pressure deviation for this new 
flexible Dirichlet BC is also presented in Figure 4(a). For this case 'dissat ap' is seen to converge to 
zero. Figures 4(b) and 4(c) show the velocity and pressure distributions respectively. This pressure 
field is normalized for 6" = 0 and it can be seen that the local pressure drop has disappeared. 

APPLICATION TO NON-ISOTHERMAL FLOWS 

Applying the Boussinesq approximation, the gravitational term on the right-hand side of 
equation (1) is modified and the energy equation is introduced in terms of temperature. Thus 

where T is the temperature ("C or K), a is the thermal diffusivity (m2 s-'), lo is the thermal 
expansion coefficient ( O C - '  or K-l )  and po is the density (kg m-3) at the reference temperature 
To ("C or K). Boundary conditions for equation (25b) are 

~ = ? ( t )  on r3, (254 
q = 4( t )  = an V T on r4 (outflow boundary), 
q = cj( t )  = 0 on r5 (no-slip boundary), 

where r3 u r4 u Ts = r. Initial conditions are 

T = T ( x , ~ = o ) = T , ( ~ )  in RUT. 
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The spatial discretization of equation (25b) is performed using the Galerkin weighted residual 
method via the following expansion: 

where N, the number of nodes, is the same as that in equation (8), because cpi(x) is again chosen to 
be a Co piecewise bilinear basis function. Inserting (26) into the weak form of equation (25b) and 
introducing the natural boundary conditions, the following GFEM equations are obtained: 

M(dT/at)+ (A + aS)T = A,, (27) 
where matrices M, A and S are the same as those of equation (9). 

For integration in time the explicit forward Euler scheme is applied; thus 

(284 MT"+ 1 - -MT"- At [A(u")+aS]T" + A t  A:. 
The vector fl: incorporates the natural boundary condition such that 

fi:=jr4(&"'f, with $"'i ( t = n A t ) .  

Having obtained the u"+ '-velocity distribution from the solution of equations (9)-(11) and the 
T"+ '-temperature distribution from equation (28a), the natural boundary condition for temper- 
ature can be calculated in the following way (via the consistent flux rnethod,l3 in a way similar to 
the computation of ap"/dn): 

(29) 
where matrices M,, A:+' and S, are formed in the usual way (at element level) considering only 
those elements which are adjacent to r4. vectors T: and Ti+' contain the temperature values of 
those boundary nodes which belong to the elements mentioned above. At these nodes the natural 
BC (via equation (25d)) is needed for t = (n +2)A t .  

The introduction of the balancing tensor diffusivity (BTD) for equation (25b) is also necessary. 
Thus the equation to solve is 

' = M4( Ti+ - T:)/A t + [ A,( u"+ ') + as,] Ti + l ,  

a T / a t  +(u V )  T= V - a* V T, (3W 
with the elementwise-calculated BTD 

a*=[  a+i"i"(At/2) inCn(At/2)]. 
i"P(At/2) a+C"v"(At/2) 

Figure 5 shows the temperature distribution for the example detailed in the previous section 
(see Figure 1 for the boundary conditions). The steady state temperature field is reached after 
about 4OOO time steps (a = 002). 

In the next section three more examples are presented for different Reynolds numbers (Re) to 
demonstrate the performance of the developed scheme. 

NUMERICAL EXAMPLES 

Lid-driven cavity flow 

In the previous sections the lid-driven cavity flow problem (in the present case a flow-through 
cavity) has been presented for Re= 100 and Pr=0.5 (Pr=v/a) .  Now, using the same coarse but 
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Figure 5. Temperature distribution; Re= 100, Pr=O.5 

... I 

.... 

. . . . . . . 7---- 

Figure 6(a). Velocity distribution; Re = loo0 

graded mesh of 625 nodes, the lid-driven cavity flow problem is solved for Re = 1OOO. Even though 
the mesh is very coarse, the change of the flow pattern for the different Re can be compared to the 
work of Ghia et aL'* The BCs are the same as those in Figure 1. Other parameters of the 
computations are p= 1-0, p =  1O00, g=O and At=0.01. The steady state has been obtained at 
about the 4000th time step ( t  = 40 s). The pressure distribution is shown in Figure 6@). Although 
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this mesh is obviously not fine enough to correctly simulate the flow and to make numerical 
comparison, it can be seen that the primary vortex has moved towards the geometric centre of the 
cavity and that the secondary (comer) eddies are more developed for Re = lo00 (Figure 6(a)) than 
for Re = 100 (Figure 4(b)). 

Figure 7 shows the pressure field for Re= 100 when an aoceleration (gx= 1.0) is included in the 
calculation. It is clear that the velocity distribution has not changed for this case. 
To obtain correct results for high Re, it is necessary to use a much finer mesh. 

Figure 6(b). Pressure distribution; Re= loo0 

Figure 7. Pressure distribution for the liddriven cavity flow; Re= 100, gr= 1 
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‘Doubled lid-driven cavity flow with hotplate 

To examine the symmetry of the calculation, the computational domain of the previous 
example is doubled and the right-hand-side as well as the left-hand-side walls are moving with 
uniform ( v  = - 1.0) velocity. The parameters of the calculation are the same as those of the ‘single’ 
lid-driven cavity for Re= 100, and the hotplate is placed in the middle of the upper horizontal 
wall. The velocity, pressure and temperature distributions for Re = 100 are presented in Figure 8. 
It can be seen that the results are symmetrical. In comparison to the ‘single’ lid-driven cavity flow, 
the primary vortices have moved towards the centre of the domain and there are no secondary 
vortices. 

I 
Figure 8(a). Velocity distribution; Re= 100 

-750 

0 

970 

Figure 8(b). Pressure distribution; Re= 100 
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1 .o 

W 

Figure 8(c). Temperature distribution; Re= 100, Pr=O.S 

Figure 9. Pressure distribution for 'doubled' lid-driven cavity flow with hotplate; Re= 100, g,= 1 

Figure 9 shows the results for the same Re but with an acceleration (gx = 1.0) in the x-direction. 
The velocity and temperature distributions for the case with acceleration do not show any 
noticeable change; thus in Figure 9 only the pressure distribution is presented. 

In Figure 10 the velocity, pressure and temperature distributions can be seen when only the 
left-hand-side wall is moving and p=2.0; thus Re=500 and Pr=O-1. 

How through sudden expansion 

The geometry of the flow region together with the boundary and initial conditions are 
illustrated in Figure 11. At the inlet fully developed Poiseuille flow is assumed; this can only be 
approximated by the four-node elements. The example of flow through a sudden expansion for 
Re=60 was presented in References 4 and 7 as well as in Reference 14. Here the results are given 
for Re= 10 and 60. The flow region has been discretized by a graded mesh of 1148 elements 
and 1231 nodes. Other parameters of the computation are-for Re= 10: p = 6 9  p= 1.0 a= 1-0, 



Figure lO(a). Velocity distribution; R e = W  

Figure 100. Pressure distribution; Re= 500 

Figwe lO(c). Temperature distribution; Re=500, Pr=Dl 
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c 
A 

Pr=6-0; for Re=60: p= 1.4 p= 1.0, a= 1-0, Pr= 1.0. With respect to the outlet boundary 
conditions the computation for Re= 10 is camed out in two ways. 

A A  U,(E) - 0.0 I u = v = 0.0 vo(E) E 0.0 

1 .Om T,(x_) 0.0 
X 

Case A (same as Case A earlier). At the outlet, similarly to the inlet, fully developed Poiseuille 
flow is prescribed. At x=2, y=O the reference pressure $ is calculated via equation (24). 

Case B (same as Case B earlier). At the outlet the natural boundary condition for velocity is 
specified through equations (13b) and ( 1 3 ~ ) ~  while the Dirichlet boundary condition for pressure is 
given by equations (1 7) and (18). 

tY 

I t  

I 
2.0m 4.0m 

Figure 11. Flow through sudden expansion; initial and boundary conditions 

Figure 12(a). Pressure distribution with 
Dirichlet BC at the outlet; Re= 10 

U 
Figure 12(b). Temperature distribution with 
Dirichlet BC at the outlet; Re=10, Pr=6 
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Figures 12 and 13 show the results for Case A and B respectively. The velocity distribution for 
Case A is not presented because it is virtually indistinguishable from that of Case B. The pressure 
and temperature fields, however, do demonstrate that the different boundary conditions lead to 
different solutions. 

For Re = 60 (since the computational domain is obviously truncated) the boundary conditions 
are the same as those of Case B for Re = 10. The velocity, pressure and temperature distributions 
are presented in Figure 14. In Figure 14(b) the dashed lines show the pressure distribution (only 
where they are distinguishable) obtained in Reference 7. It can be seen that there is no qualitative 
difference between the two solutions although they differ slightly near the outlet (see p = O  and 
p = 50 lines). The pressure calculated in Reference 14 resembles both solutions displayed in 
Figure 14(b). In the calculation of Reference 14 the lines corresponding to p <  - 100 are similar to 
those of the present method, while the line corresponding to p = O  is like the one presented in 
Reference 7. For the most part in can be concluded that these solutions agree well. 

For both Re= 10 and 60 the time increment is chosen to be At=0*0002; to reach the steady 
state solution, about 4OOO time steps are necessary. 

lol 
Figure 13(a). Pressure distribution with 

natural BC at the outlet; Re= 10 

,.: : : : I :::: 
. . a  ...,, , . . . . . . . , . . . . I . .  

Figure 13(b). Velocity distribution with 
natural BC at the outlet; Re = 10 



Figure 13(c). Temperature distribution with 
natural BC at the outlet; Re= 10, Pr=6 

FI --.. By Reference [7] 

. * . . , a  

Figure 14(a). Velocity distribution; Re=60 

Figure 14(b). Pressure distribution; Re=@ Figure 14(c). Temperature distribution; Re=60 
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CONCLUSIONS 

A finite element solution has been presented to solve the incompressible Navier-Stokes equations 
for various Reynolds numbers using an explicit time integration scheme and the Galerkin 
weighted residual method for discretization in space. 

To solve the directly derived pressure Poisson equation, in the second step of the algorithm the 
consistent Neumann boundary condition for pressure is introduced. When the normal velocity is 
given on the entire boundary to avoid the discontinuity of the Neumann boundary condition for 
pressure, the Dirichlet boundary condition for pressure is prescribed in a flexible way. 

Owing to the application of the directly derived pressure Poisson equation, there is no spurious 
pressure mode. For the calculation of the tangential and normal derivatives of pressure the 
consistent flux method is utilized. 

The balancing tensor viscosity/diffusivity is applied to make the explicit time integration 
scheme stable (for advection-dominated flow) and to increase the time increment. 

Employing bilinear interpolation functions for the approximation of the primitive variables, 
two-point quadrature is used to evaluate the Galerkin integrals and the mass matrix is lumped via 
row-sum at element level. 

To obtain velocity, pressure and temperature distributions in the first example, which utilizes 
625 nodes, the computation of 3000 time steps required 16 min CPU time on a FACOM-VP30 
computer. In order to make this technique more cost-effective, future effort includes an effective 
code vectorization and the introduction of a subcycling process for pressure. 
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